Derivatives of Inverse Functions

Theorem: Let f be a function whose domain is an interval I. If f has an inverse function, then the following are true:

- If f is continuous on its domain, then f^{1} is continuous on its domain
- If f is differentiable at c and $f^{\prime}(c) \neq 0$, then f^{-1} is differentiable at $f(c)$

Derivative of Inverse Function: Let f be a function that is differentiable on I. If f has an inverse function g, then g is differentiable at any x for which $f^{\prime}(g(x)) \neq$ 0 . And $g^{\prime}(\boldsymbol{x})=\frac{\mathbf{1}}{\boldsymbol{f}^{\prime}(\boldsymbol{g}(\boldsymbol{x}))}, \boldsymbol{f}^{\prime}(\boldsymbol{g}(\boldsymbol{x})) \neq \mathbf{0}$.
*** Graphs of Inverse Functions have Reciprocal Slopes :

$$
\frac{d y}{d x}=\frac{1}{\frac{d x}{d y}}
$$

Example: If $f(x)=x^{3}+2 x-10$, find $\left(f^{-1}\right)^{\prime}(x)$.
Method 1:
(a) Establish that the function is differentiable and has an inverse, then we know that the derivative of the inverse exists.
(b) Let $y=f(x)$
(c) Interchange x and y to obtain the inverse function
(d) Differentiate with respect to $y: \frac{d x}{d y}=$
(e) Apply formula: $\frac{d y}{d x}=$

Method 2: (Implicit Differentiation)
(a) Let $y=f(x)$
(b) Interchange x and y to obtain the inverse function
(c) Differentiate each term implicitly with respect to x
(d) Solve for $\frac{d y}{d x}$.

Example: If $f(x)=2 x^{5}+x^{3}+1$. Find (a) $f(1) \quad$ (b) $f^{\prime}(1) \quad$ (c) $\left(f^{-1}\right)(4) \quad$ (d) $\left(f^{-1}\right)^{\prime}(4)$

$\frac{d}{d x}[\arcsin u]=\frac{u^{\prime}}{\sqrt{1-u^{2}}}$	$\frac{d}{d x}[\arccos u]=\frac{-u^{\prime}}{\sqrt{1-u^{2}}}$
$\frac{d}{d x}[\arctan u]=\frac{u^{\prime}}{1+u^{2}}$	$\frac{d}{d x}[\operatorname{arccot} u]=\frac{-u^{\prime}}{1+u^{2}}$
$\frac{d}{d x}[\operatorname{arcsec} u]=\frac{u^{\prime}}{\|u\| \sqrt{u^{2}-1}}$	$\frac{d}{d x}[\operatorname{arccsc} u]=\frac{-u^{\prime}}{\|u\| \sqrt{u^{2}-1}}$

Example: Differentiate $y=5 \sin ^{-1}(3 x)$

Example: Differentiate $y=\sec ^{-1}\left(3 x^{2}\right)$

Example: Differentiate $y=\arcsin x+x \sqrt{1-x^{2}}$

